Методы научных исследований

8 лекция. Определение законов распределения на основе опытных данных

Исполнитель: Байболов Асан Ерболатович

Электронный адрес: asan.baibolov@kaznaru.edu.kz

ПЛАН ЛЕКЦИИ

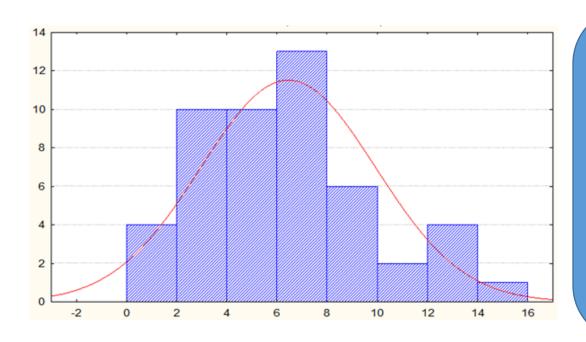
- 1) Нормальный закон распределения;
- 2) Свойства функции плотности нормального распределения

СПИСОК ЛИТЕРАТУРЫ:

- 1. Ивченко Г.И., Медведев Ю.И. Математическая статистика: Учебник. М.: Книжный дом «ЛИБРОКОМ», 2014. 352 с.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика, Высшее образование, 2006, с. 17-30.
- 3. Сборник задач по математике: Учеб. пособие для втузов: В 4 ч. Ч. 4: Теория вероятностей. Математическая статистика / Под общ. ред. А. В. Ефимова, А. С. Поспелова. 3-е изд., перераб. и доп. М.: Физматлит, 2004. 432 с.

Нормальное распределение: теоретические основы

Нормальное распределение вероятностей непрерывной случайной величины можно назвать колоколообразным из-за того, что симметричная относительно среднего функция плотности этого распределения очень похожа на разрез колокола.



Вероятность встретить в выборке те или иные значение равна площади фигуры под кривой и в случае нормального распределения мы видим, что под верхом "колокола« - площадь, а значит, вероятность, больше, чем под краями. То есть получаем, что: вероятность встретить человека "нормального" роста, поймать рыбу "нормальной" массы выше, чем для значений, отличающихся в большую или меньшую сторону.

Плотности нормального распределения

Функцию плотности нормального распределения непрерывной случайной величины можно найти по формуле:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

где x - значение изменяющейся величины, μ - среднее значение, σ - стандартное отклонение, e=2,71828... - основание натурального логарифма, π =3,1416...

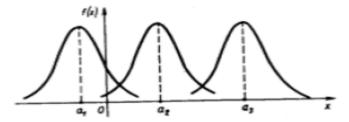
Свойства функции плотности нормального распределения

- для всех значений аргумента функция плотности положительна;
- если аргумент стремится к бесконечности, то функция плотности строится к нулю;
- функция плотности симметрична относительно среднего значения: $f(\mu+x)=f(\mu-x)$;
 - наибольшее значение функции плотности у среднего

значения:
$$f_{\max}(x) = f(\mu) = \frac{1}{\sigma\sqrt{2\pi}}$$
;

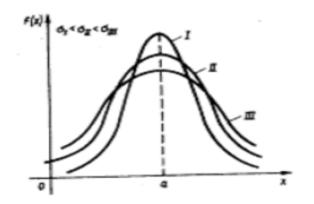
- кривая функции плотности выпукла в интервале $(\mu \sigma)$; $(\mu + \sigma)$ и вогнута на остальной части;
- мода и медиана нормального распределения совпадает со средним значением;
- при нормальном распределении коэффициенты ассиметрии и эксцесса равны нулю (подробнее рассмотрим это свойство в следующем параграфе о приближенном методе проверки нормальности распределения).

Изменения среднего значения $^{\mu}$ перемещают кривую функции плотности нормального распределения в направлении оси Ox. Если $^{\mu}$ возрастает, кривая перемещается вправо, если $^{\mu}$ уменьшается, то влево.



Если меняется стандартное отклонение, то меняется высота вершины кривой. При увеличении стандартного отклонения вершина кривой находится выше, при уменьшении - ниже.

При изменении параметра о изменяется форма нормальной кривой. Если этот параметр увеличивается, то максимальное значение функции f(x) убывает, и наоборот. Так как площадь, ограниченная кривой распределения и осью Ох, должна быть постоянной и равной 1, то с увеличением параметра кривая приближается к оси Ох и растягивается вдоль нее, а с уменьшением о кривая стягивается к прямой x=a.



ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Основные понятия и определения математической статистики
- 2. Что называется генеральной совокупностью и выборкой;
- 3. Выборочная функция распределения

Спасибо за внимание!